Generalized Haldane equation and fluctuation theorem in the steady-state cycle kinetics of single enzymes.

نویسندگان

  • Hong Qian
  • X Sunney Xie
چکیده

Enzyme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have identical nonexponential distributions: Theta + (t)=Theta_(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+) and backward (p-) cycles, kBT ln(p+/p-) is shown to be the chemical driving force of the NESS, Delta mu. More interestingly, the moment generating function of the stochastic number of substrate cycle v(t), , follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When lambda=delta mu/kBT, we obtain the Jarzynski-Hatano-Sasa-type equality identical with 1 for all t, where v Delta mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force in situ from turnover data via single-molecule enzymology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waiting cycle times and generalized Haldane equality in the steady-state cycle kinetics of single enzymes.

Enzyme kinetics are cyclic. A more realistic reversible three-step mechanism of the Michaelis-Menten kinetics is investigated in detail, and three kinds of waiting cycle times T, T+, T- are defined. It is shown that the mean waiting cycle times T, T+, and T- are the reciprocal of the steady-state cycle flux Jss, the forward steady-state cycle flux Jss+ and the backward steady-state cycle flux J...

متن کامل

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

Transient Characteristics of a Single-Effect Absorption Refrigeration Cycle

This paper deals with a lumped-parameter dynamic simulation of a single-effect LiBr-H2O absorption chiller. In many studies the thermodynamic properties of LiBr-H2O solution were taken from some approximate relations causing the results to be somewhat inaccurate. These relations were used to solve simultaneous differential equations involving the continuity of species constituting the LiBr-H2O ...

متن کامل

The Heinemann-Mittermeir Generalized Shape Factor and Its Practical Relevance

Fifty years ago Warren and Root have introduced the shape factor. This fundamental parameter for modeling of naturally fractured reservoirs has been discussed stormily ever since. Different definitions for shape factor have been suggested which all of them are heuristically based. Recently, Heinemann and Mittermeir mathematically derived - based on the dual-continuum theorem assuming pseudo-ste...

متن کامل

Experimental accessibility of generalized fluctuation-dissipation relations for nonequilibrium steady states.

We study the fluctuation-dissipation theorem for a brownian particle driven into a nonequilibrium steady state experimentally. We validate two different theoretical variants of a generalized fluctuation-dissipation theorem. Furthermore, we demonstrate that the choice of observables crucially affects the accuracy of determining the nonequilibrium response from steady state nonequilibrium fluctua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 74 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006